





Mi /

ON THE POWER FUNCTION OF A SIGN TEST FORMED BY USING SUBSAMPLES

John E. Walsh
Douglas Aircraft Co.. Inc.

P-7

Reproduced by

The KAND Corporation • Santa Monica • California

The views expressed in this paper are not necessarily those of the Corporation

## ON THE POWER FUNCTION OF A SIGN TEST FORMED BY USING SUBSAMPLES

By John E. Walsh

Douglas Aircraft Co., Inc.

- The sign test can be used to obtain signifi-1. Summary. cance tests for the population median under extremely general conditions. \ One disadvantage of the sign test for the median is the limited number of suitable significance levels available for a given number of observations. If the observations are drawn as several subsets of specified sizes, however, a variation of the sign test can be applied using order statistics of order statistics of these subsets. This test furnishes a much wider variety of suitable significance levels and is valid under the same conditions as the sign test. The purpose of this note is to investigate the power efficiency of the significance tests for the median formed in this way for the particular case in which each observation is drawn from the same normal population. For the cases considered, it is found that the pover efficiency is almost always decreased by using two or more subsets rather than all the observations as a single set; sometimes this decrease in pover efficiency is very large. Also, for a given significance level, it is found that the power efficiency can wary noticeably with the manner in which the test is formed.
- 2. Statement of conditions and tests. Consider n independent observations drawn from n (possibly different) populations which satisfy the conditions

- (i) Each population has a unique median
- (11) Each population is continuous at the median (1.e. its cdf is continuous at the median).
- (111) The median of each population has the same value  $\rho$ . The following significance tests compare  $\rho$  with a given value  $\rho_o$  through use of these n observations.

Let  $x(1|n), \ldots, x(n|n)$  represent the values of the n observations arranged in increasing order of magnitude. Then the one-sided sign test of p< p is defined by

(1) Accept 
$$\varphi < \varphi \leq 1$$
  $x(1|n) < \varphi_0$ .

The significance level of this test is equal to

(2) 
$$\Pr[x(1|n) \leqslant \emptyset] = (\frac{1}{2})^n \frac{n}{\sum_{s=1}^n \frac{n!}{s! (n-s)!}}.$$

The one-sided sign test of p>p is defined by

(3) 
$$\frac{\text{Accept } \varphi > \varphi_0 \text{ if } x(n+1-1|n) > \varphi_0.$$

The significance level of this test is also given by (2). An equal tail sign test of  $P \neq P_0$  is given by

(4) Accept  $p \neq p_0$  if either  $x(i|n) < p_0$  or  $x(n+1-i|n) > p_0$ , (i>n+1) The significance level of this test is equal to twice the value of (2).

Now suppose that the n independent observations were drawn as r subsets, the kth subset being of size  $n_k$ ,  $(k=1,..., r\leq n; n=n_1+...+n_r)$ . Then, for given  $a_k$ ,  $\Pr\left[x(a_k|n_k)<\rho\right]$  can be computed for the kth

subset by the use of (2). Let  $y_j$  be the jth largest of  $x(\alpha_1|n_1)$ , ...,  $x(\alpha_r|n_r)$ . Then the values of  $\Pr(y_u<\rho)$  and  $\Pr(y_u<\rho< y_v)$  can be determined from elementary probability considerations by using the values of the  $\Pr[x(\alpha_k|n_k)<\rho]$  and the fact that the subsets are independent. By appropriate choices of r, the  $n_k$ , the  $\alpha_k$ , u, and v, significance tests with a wide variety of suitable significance levels can frequently be found.

The subset tests considered here are restricted to the following:

(5) Accept 
$$\varphi < \varphi_0$$
 if mex  $[x(\alpha_k | n_k); k=1,...,r] < \varphi_0$ . The significance level of this test equals

(6) 
$$\prod_{k=1}^{r} \Pr[x(a_{k}|n_{k}) < \varphi].$$

The one-sided test of  $P > P_0$  is

(7) 
$$\underline{\text{Accept }} \rho, \rho, \underline{\text{if min}} [x(n_k+1-\alpha_k|n_k); k=1,...,r] > \rho_o.$$

The significance level of this test is also equal to (6).

The equal tail test of  $P \neq P_0$  is defined by

Accept 
$$9 \neq 9$$
 if either max  $[x(a_k \mid n_k); k-1, ..., r] < %.$ 

(8) or min  $\left[x(n_k+1-\alpha(n_k);k=1,\ldots,r]>\rho_0\right]$ .

1)

The significance level of this test is equal to twice the value of (6).

3. Significance levels. Examination of the results of section 2 shows that the significance levels of all of the tests (1), (3), (4), (5), (7), (8) are determined if the significance levels of tests (1) and (5) are known. Thus it is sufficient to restrict significance level considerations to tests (1) and (5).

From a practical viewpoint, the important significance levels for one-sided tests are in the .05 - .005 range. Table 1 contains a list of the tests of type (1) which have significance levels near this range for n\(\frac{1}{2}\). It is seen that suitable significance levels are not available for n\(\frac{4}{2}\). Also there is a very limited choice of satisfactory levels for all values of n from 4 to 15 inclusive.

If the n observations are drawn as subsets, suitable significance levels are still not available for n<4. For nz6, however, a greater variety of satisfactory levels can be obtained. In practice the .05, .025, .01, .005 significance levels are of particular importance. Table 2 shows how closely these levels can be approximated for test (5). The approximations can be made very close for n=12 and at least as good for n>12.

Thus, if the observations are not drawn as subsets, the number of suitable significance levels is very limited. Drawing the observations as subsets furnishes many more satisfactory significance levels. Examination of the power efficiencies listed in Tables 1 and 2 shows, however, that noticeable efficiency can be lost by using the subset arawing procedure if the observations are a sample from a normal population.

4. Power efficiency derivations. The power efficiency of a significance test is defined in [1]. Essentially the power efficiency of a significance Aequals 100 m/n %, where n is the sample size for the given test and m is the sample size (not necessarily integral) of the corresponding most powerful test at the same significance level whose power function is approximately the same as that of the given test.

For one-sided tests of  $P < P_o$ ,  $P > P_o$  and symmetrical tests of  $P \neq P_o$ , the most powerful test for a sample from a normal population (unknown variance) is the appropriate Student t-test. Also it is sufficient to limit investigations to the one-sided tests (1) and (5). As shown in [1], tests (3) and (4) have the same power efficiency as (1) while tests (7) and (8) have the same power efficiency as test (5).

The power efficiencies listed in Table 1 were obtained from [1, Table 6] and will not be derived here.

Let the normal population have variance  $\sigma^2$  and consider test (5)

Power Function = 
$$\frac{1}{k=1} \quad \Pr\left[\mathbf{x}(\alpha_{\mathbf{k}} \mid \mathbf{n}_{\mathbf{k}}) < \rho_{o}\right]$$

$$= \prod_{k=1}^{r} \quad \Pr\left[\frac{\mathbf{x}(\alpha_{\mathbf{k}} \mid \mathbf{n}_{\mathbf{k}}) - \rho}{\sigma} < \frac{\rho_{o} - \rho}{\sigma}\right]$$

$$= \prod_{k=1}^{r} \left\{\sum_{s=s_{k}} \frac{\mathbf{n}_{k}}{(\mathbf{n}_{k} - s)! s!} \left[\mathbf{x}(s)\right]^{s} \left[\mathbf{1} - \mathbf{N}(s)\right]^{n_{k} - s}\right\}$$

where

$$\delta = (f_0 - f)/\epsilon, \qquad \qquad \Re(\xi) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\xi} e^{-\frac{1}{2}x^2} dx.$$

The power function values for test (5) listed in Table 3 were computed from (9). The corresponding t-test power function values were obtained by using the normal approximation given in [2]. The power efficiencies listed in Table 2 were obtained from the results of

Table 3.

Examination of Tables 1 and 2 shows that a substantial amount of information can be lost by using a test of the form (5) rather than of the form (1). The asymptotic results of [3] show that test (1) is always at least 63.7% efficient. Some of the tests of Table 2, however, are only slightly more than 40% efficient. On the other hand, some tests of type (5) have approximately the same power efficiency as the corresponding types (1) tests. For example, the test

Accept 
$$\rho < \rho_0$$
 if max  $[x(8|3),x(2|3)] < \rho_0$ 

compares very favorably with the corresponding type (1) tests.

This shows that the use of test (5) should not be completely avoided but that the power efficiency of a test of this type should be investigated before that test is considered for application.

Tests having the same significance level and based on the same total number of observations can have a wide variety of power efficiencies depe ding on the way in which the test is formed. Consider the case of significance level .0175 and n = 15. Table 4 contains the power efficiencies of six tests formed in different ways. These tests vary from 42% to 74% efficient. Use of the test

Accept 
$$p < p_0$$
 if EBX  $[x(4|7),x(1|2),x(1|2),x(4|4)] < p_0$ 

results in the loss of 8.7 sample values while only 3.85 sample values are lost by using the test

Accept 9< 9 11 x(12 15) < 9.

of

It is to be observed that the above power efficiency investigations are based on the assumption that the n observations are a sample from a normal population. If there is no reason to believe that the n observations come from the same normal population, the power efficiencies listed in Tables 1 and 2 may be far from the true values. The tests formed by drawing the observations as subsets might be very efficient for certain non-normal situations.

## REFERENCES

- John E. Telsh. "Some significance tests for the median which are welld under very general conditions." To appear in Annals of Math. Stat.
- [2] N. L. Johnson and B. L. Welch, "Applications of the noncentral t-distribution," Blometrika, Vol. 31 (1940), p. 376.
- John E. Valsh, "On the asymptotic power efficiency of the sign test for slippege of means." bubmitted to innals of Yath. Stat.

TABLE 1

Type (1) Tests with Significance Levels Near the .05 - .005 Range

| Test                 | Signif-<br>icance<br>Level | Approx.<br>Effi-<br>cioncy | Test                                                                       | Signif-<br>icance<br>Level | Approx.<br>Effi-<br>ciency |
|----------------------|----------------------------|----------------------------|----------------------------------------------------------------------------|----------------------------|----------------------------|
| $x(4 4) < \varphi$ . | .0625                      | 95%                        |                                                                            |                            |                            |
| x(5 5) < ₽.          | .0312                      | ′ 96 <b>%</b> .            |                                                                            |                            |                            |
| x(6 6) < 90          | .0156                      | 95%                        |                                                                            |                            |                            |
| x(717) < 90          | .0078                      | 95%                        | x(6 7) 490                                                                 | .0625                      | £0%                        |
| x(8 8) < 90          | .0039                      | 95%                        | x(7 8) < φ₀                                                                | .0352                      | 80%                        |
| x(819) < 90          | .0195                      | 82%                        |                                                                            |                            |                            |
| x(9 10) < 90         | .0107                      | 80%                        | x(8 10)490                                                                 | .0547                      | 75%                        |
| x(10 11)<9.          | .0059                      | 81%                        | x(9 11) < 9.                                                               | .0327                      | 76 <b>%</b>                |
| x(10 12) < 9.        | .0193                      | 75%                        |                                                                            |                            |                            |
| x(11/13) < 9.        | .0112                      | 75 <b>%</b>                | x(10 13) ∠9,                                                               | .0462                      | 70%                        |
| x(12/14) < 90        | .0065                      | 78%                        | x(11 14) < 9.                                                              | .0287                      | 73%                        |
| x(13 15) < 9.        | .0037                      | 78%                        | x(12 15) \( \q_{\begin{subarray}{c} \q_{\begin{subarray}{c} \eqn} \eqn} \) | .0175                      | 74%                        |
| x(11 15) < %         | .0593                      | 70%                        |                                                                            |                            |                            |

43.5% Approx. clency 43% 758 72% 758 73 75% 8 58% 13 65% 738 508 Signif1-Lev. 1 6970 1050 8600 7110. 6970. 8600 ,0235 0508 .0459 cance 8600. 6>(4/4),x(3/4),x(3/4) co. .0309 αν[x(2|5),x(2|3),x(3|3)] ... max x(1|3),x(1|3),x(4|4) max x(2|3),x(1|2),x(3|3) Kg Some Type (5) Tests Near the .05, ..025, .01, .005 Significance Levels max x(1 2),x(6 6) 49 max[x(3|4),x(5|5)]40 Accept 9<9 15 max x(4 4),x(1 2) 4 % max x(5|5),x(1|2) < 9. max[x(2|5),x(4|4)]<0 x [x(2|9),x(2|3)] 4 % max[x(5|6),x(1|1)] < 3 (6 7) 48 max x(8|9), x(1|1) 6 Approx. Eff1clency 1.58 3.87 356 958 20% 95X 738 219 958 %% % 738 22 218 35 199 Signifitcarice ,0078 6970 .0039 .0625 0312 0156 .0235 .0059 ,0235 6700 6700 6700 ,0254 ,0235 .0254 rax x(2 5), x(2 3), x(4 4) 49 max[x(1|2),x(7|7)]<9.
max[x(2|3),x(1|2),x(4|4)]<9.  $\max_{\mathbf{x}} \left[ \mathbf{x}(8|9), \mathbf{x}(2|2) \right] < \mathbf{Q}.$ mx x(2 |3),x(3 |4),x(5 |5) < 8 max[x(4|5),x(2|2)]<9. max [x(3|4),x(6|6)] < 9. max x(4 | 5),x(3 | 3) < 8 max x(2|5),x(5|5)] < 9. Accept ox of 18 x(6|6)<9° x(7|7)<9. x(5|5)200 x(4 | 4) < 0. Test x(8|8) ø 5 9 2 4 ~ 40 9 2 Ħ

Approximate Values of itwer Function

8 = 2.4

8=1-8

8=1.2

8 -.6

Slpificarce Level

Approx. Efficlency

Sample Size

Significance Test

.987

.967

Fower Function Values of Some Type (5) Tests Near the .05, .025, .01, .005 Significance Levels

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Approx.         | Stentf- | Approxin     | mate Value                 | s of lower    | Fur.c. for | ,                                     | 5.5      |             | .0235  | .17, | .553  | .831   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|---------|--------------|----------------------------|---------------|------------|---------------------------------------|----------|-------------|--------|------|-------|--------|
| Significance Tost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Size       | Eff1-<br>ciency |         | <b>8</b> =.6 | <b>5</b> =.6 <b>5</b> =1.2 | <b>5=</b> 1.8 | 2-5.7      | - (ε ε), κ(1 ε), κ(4 4) <b>&lt; 9</b> | 6        | <b>\$19</b> | .0235  | .20% | .582  | .859   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.32       |                 | 6970.   | .2%          | 065.                       | .881          | .983       | t,                                    | 4.2      |             | 90508  | .243 | 765.  | .831   |
| ELX x(4 4), x(1 2) < 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9          | 72%             | 6970.   | .256         | .603                       | 098•          | 3965       | X(2 5),x(4 4)                         | ٥        | 82.7        | 2508   | 022. | .610  | .861   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.25       |                 | .0235   | .164         | us.                        | .851          | .980       | £4                                    | 7.7      |             | 6700*  | .081 | .413  | .833   |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | 2          | 758             | .0235   | .186         | .534                       | .829          | .958       | 8 (0) 5,x (0) 5, (1)                  | 30       | 778         | 6700.  | .102 | .443  | .796   |
| t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1        |                 | 6970°   | .282         | .700                       | 276.          | 965.       | ٠٠                                    | 8        |             | 8600.  | .160 | .631  | 776.   |
| zax x(4  5),x(2  2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7          | 73%             | 6970.   | .306         | . 701                      | 616.          | 7e6.       | 3,,,(2 1),                            | 01       | 808         | £600°  | .178 | .642  | ,926   |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.25       |                 | .0547   | .326         | .758                       | 896°          |            | ٢                                     | 5.1      |             | .0254  | 691. | .512  | 8<br>a |
| max x(5 6),x(1 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~          | 75%             | .0547   | 9776         | .756                       | 275.          |            | 6 (3 (3) x(1) =                       | 70       | 513         | .0254  | 961. | .540  | .830   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.17       |                 | 7110.   | £11.         | 777                        | .821          | .975       | دو                                    | 4.35     |             | 5970.  | .237 | 965.  | .63    |
| 2x x(1 2),x(6 6) xq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | €0         | X17             | 7110.   | .135         | .473                       | 908.          | .950       | 2 (4   4) x(ε(ξ)), x(ε(η)) <6         | 10       | 43.5%       | .04.69 | .268 | цэ.   | .863   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.85       |                 | .0235   | .194         | .601                       | 316.          | 665.       |                                       | 8.7      |             | 6700   | .106 | .527  | .920   |
| 2 /2   51, x (2   5) x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ю          | 3.5%            | .0235   | . 222        | .620                       | .886          | .975       | 65/2/5×                               | ជ        | 362         | 6700.  | .129 | . 568 | . 893  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.68       |                 | 6970.   | .258         | 979.                       | 919.          | 266.       | د                                     | 7.15     |             | 8600.  | .129 | .527  | 868    |
| =xx = (2   3), x(1   1), x(3   3) < q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6</b> 0 | 58%             | 5970.   | . 288        | .658                       | .891          | 926.       | φ [(η   η) x(                         | ជ        | <b>65%</b>  | .0098  | .158 | .551  | .855   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1        |                 | 6500.   | 080.         | .384                       | 962.          | .972       | t-2                                   | 5.3      |             | .0235  | .167 | .520  | .855   |
| (1 2), (7 7) < 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •          | 882             | 6500.   | 860.         | 817.                       | 177.          | -9.2       | % (5!5)x,(5,5),(5,5)                  | ជ        | <b>%87</b>  | .0235  | .195 | .541  | .832   |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.75       |                 | 8600.   | .123         | .472                       | 978.          | .983       | c.                                    | 8.4      |             | .0508  | .283 | .635  | 986    |
| max x(3 4),x(5 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٥          | 758             | 8600.   | 077.         | .506                       | .826          | 095.       | (5 5),x(2 3),x(3 3)                   | <u>я</u> | 738         | .0508  | .303 | 799.  | .891   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          |                 |         |              |                            |               |            |                                       | 1        |             |        |      |       |        |

.973

.995

.959

.9a

.981

766.

.958

.967

.984

.478

866.

686.

.983

996.

.932

.952

.993

996.

TABLE 3 (Concluded)

|                                                                                       | Sam; le | Approx.         | Simif-          | Approxi       | mate Valu     | es of ione | r Function |
|---------------------------------------------------------------------------------------|---------|-----------------|-----------------|---------------|---------------|------------|------------|
| Significance Test                                                                     | Size    | Effi-<br>ciency | icance<br>Level | <b>8 =.</b> 6 | <b>8=</b> 1.2 | 8=1.8      | 8=2.4      |
| t                                                                                     | 8       |                 | .0049           | .089          | .451          | .864       | .590       |
| [x(2 3),x(3 4),x(5 5)]                                                                | 12      | 66%             | .0049           | .115          | .487          | .824       | .958       |
| t                                                                                     | 8.75    |                 | .0098           | .184          | .700          | .974       |            |
| $\sum_{\mathbf{x} \in \mathbf{x}(8 9), \mathbf{x}(2 3)} \langle \mathbf{q}_{\bullet}$ | 12      | 73%             | .0098           | .200          | .699          | .959       |            |
| t                                                                                     | 5.5     |                 | .0254           | .189          | .575          | .896       | .990       |
| x(2 5),x(2 3),x(4 4)                                                                  | 12      | 45 <b>%</b>     | .0254           | .220          | .588          | .859       | .965       |
| t                                                                                     | 6       |                 | .0508           | •353          | .811          | .933       |            |
| x(2 5), x(6 7) < 9.                                                                   | 12      | 50 <b>%</b>     | .0508           | .376          | .808          | .973       |            |

7 3 20 76

Some Significance Tests at the . (175 Significance Level for mals

|                                                           | 4             | k; ; ; ox.     |         | Approximate | s      | of Fewer | Purct10 |
|-----------------------------------------------------------|---------------|----------------|---------|-------------|--------|----------|---------|
| Significance Test                                         | \$42 <b>e</b> | ctercy         | 106556  | 5=.6        | 8 =1.2 | \$ =1.8  | 8 =2.   |
| £.                                                        | 21.15         |                | 5710.   | 696.        | 726.   | 666.     |         |
| x(12 15) < <b>9.</b>                                      | 22            | <b>X</b> */    | \$7.23. | .3TI        | .916   | 966.     |         |
| د                                                         | 8.1           |                | \$210.  | मतः.        | .76.   | .983     |         |
| max[x(7 8),x(4 7)] < %                                    | 15            | 278            | \$210.  | .276        | .764   | .967     |         |
|                                                           | 8.4           |                | \$255   | . 248       | Let.   | 886*     |         |
| zax [x(ζ ξ),x(ζ ξ),x(ξ ξ)] < β.                           | 15            | \$95           | S. 10.  | .231        | .789   | 175.     |         |
| ٠                                                         | 6.3           |                | 5710.   | .167        | 695*   | 906°     | .992    |
| Exx x(4   7), x(1   2), x(1   2), x(4   4)                | 57            | 42%            | \$210.  | 12.         | 765.   | .859     | ne.     |
| ٠,                                                        | 6.6           |                | .0175   | .178        | £58    | &5·      | 966.    |
| En [2 [5], x(2 [3), x'1 [2), x(1 [2), x(3 [3)] < 6        | 15            | <b>X</b>       | . 52.75 | . 230       | 079.   | 053.     | 926.    |
| · ·                                                       | 7.1           |                | \$273   | .201        | 603.   | 956.     | 866.    |
| ==x[2(2),x(2 2),x(2 2),x(2 2), (2 2), (2 2), (2 2), (2 2) | 15            | 18.77<br>18.77 | u \     | .2.5        | ćaj.   | .913     | 186.    |
|                                                           |               |                |         |             |        |          |         |